subject 불소와 불소골격증
writer 관리자
email
date 18-12-06 14:08
hit 1,603

본문

2018 Nov 20;169:410-417. doi: 10.1016/j.ecoenv.2018.11.035. [Epub ahead of print]

Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis.

불소가 불소골격증의 발현에 미치는 역할

Abstract

Fluoride is an essential trace element required for proper bone and tooth development. Systemic high exposure to fluoride through environmental exposure (drinking water and food) may result in toxicity causing a disorder called fluorosis. In the present study, we investigated the alteration in DNA methylation profile with chronic exposure (30 days) to fluoride (8 mg/l) and its relevance in the development of fluorosis. Whole genome bisulfite sequencing (WGBS) was carried out in human osteosarcoma cells (HOS) exposed to fluoride. Whole genome bisulfite sequencing (WGBS) and functional annotation of differentially methylated genes indicate alterations in methylation status of genes involved in biological processes associated with bone development pathways. Combined analysis of promoter DNA hyper methylation, STRING: functional protein association networks and gene expression analysis revealed epigenetic alterations in BMP1, METAP2, MMP11 and BACH1 genes, which plays a role in the extracellular matrix disassembly, collagen catabolic/organization process, skeletal morphogenesis/development, ossification and osteoblast development. The present study shows that fluoride causes promoter DNA hypermethylation in BMP1, METAP2, MMP11 and BACH1 genes with subsequent down-regulation in their expression level (RNA level). The results implies that fluoride induced DNA hypermethylation of these genes may hamper extracellular matrix deposition, cartilage formation, angiogenesis, vascular system development and porosity of bone, thus promote skeletal fluorosis. 

sns Link parsing error
  • 페이스북으로 보내기
  • 트위터로 보내기
  • 구글플러스로 보내기
  • 블로그 보내기
  • 텔레그램 보내기

댓글목록

등록된 댓글이 없습니다.

이전글 다음글