subject 불소와 IQ, 뇌 발달에 관한 연구들: 40편이상
writer 관리자
email
date 18-12-05 11:43
hit 1,279

본문

불소는 대표적인 충치예방물질로 알려져있으며 그에대한 많은 연구결과들이 있습니다.

불소의 대표적인 부작용은 치아불소증과 골격불소증으로 이미 널리 알려져 있습니다.


그러나 최근 들어 불소의 독성이 전신질환과 관련 되어 있고, 특히 어린이들의 뇌발달, 지능지수에 좋지 않은 영향이 있다는 연구들이 발표 되고 있습니다.  가장대표적인 것이 하바드 대학의 연구이며 이 연구가 발표된 후 불소 찬반론자들 사이에서 많은 논란을 불러 일으켰습니다.


아래는 지금까지 뇌발달과 불소의 관계를 연구한 논문들을 정리한 것입니다.





As of June 2018, a total of 60 studies have investigated the relationship between fluoride and human intelligence, and over 40 studies have investigated the relationship fluoride and learning/memory in animals. Of these investigations, 53 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while 45 animal studies have found that fluoride exposure impairs the learning and/or memory capacity of animals. The human studies, which are based on IQ examinations of over 15,000 children, provide compelling evidence that fluoride exposure during the early years of life can damage a child’s developing brain.

After reviewing 27 of the human IQ studies, a team of Harvard scientists concluded that fluoride’s effect on the young brain should now be a “high research priority.” (Choi, et al 2012). Other reviewers have reached similar conclusions, including the prestigious National Research Council (NRC), and scientists in the Neurotoxicology Division of the Environmental Protection Agency (Mundy, et al). In the table below, we summarize the results from the 51 studies that have found associations between fluoride and reduced IQ and provide links to full-text copies of the studies. For a discussion of the 7 studies that did not find an association between fluoride and IQ, click here.

Quick Facts About the 53 Studies:

  • Location of Studies: China (33), India (13), Iran (4), and Mexico (3).
  • Sources of Fluoride Exposure:  43 of the 53 IQ studies involved communities where the predominant source of fluoride exposure was water; seven studies investigated fluoride exposure from coal burning.
  • Fluoride Levels in Water: IQ reductions have been significantly associated with fluoride levels of just 0.15 to 1.38 mg/L (Bashash 2017); 0.7 to 1.2 mg/L (Sudhir 2009); 0.88 mg/L among children with iodine deficiency. (Lin 1991) Other studies have found IQ reductions at 1.4 ppm (Zhang 2015); 1.8 ppm (Xu 1994); 1.9 ppm (Xiang 2003a,b); 0.3-3.0 ppm (Ding 2011); 2.0 ppm (Yao 1996, 1997); 2.1 ppm (Das 2016); 2.1-3.2 ppm (An 1992); 2.2 ppm (Choi 2015); 2.3 ppm (Trivedi 2012); 2.38 ppm (Poureslami 2011); 2.4-3.5 ppm (Nagarajappa 2013); 2.45 ppm (Eswar 2011); 2.5 ppm (Seraj 2006); 2.5-3.5 ppm (Shivaprakash 2011); 2.85 ppm (Hong 2001); 2.97 ppm (Wang 2001, Yang 1994); 3.1 ppm (Seraj 2012); 3.15 ppm (Lu 2000); 3.94 ppm (Karimzade 2014); and 4.12 ppm (Zhao 1996).
  • Fluoride Levels in Urine: About a quarter of the IQ studies have provided data on the level of fluoride in the children’s urine, with the majority of these studies reporting that the average urine fluoride level was below 3 mg/L. To put this level in perspective, a study from England found that 5.6% of the adult population in fluoridated areas have urinary fluoride levels exceeding 3 mg/L, and 1.1% have levels exceeding 4 mg/L. (Mansfield 1999) Although there is an appalling absence of urinary fluoride data among children in the United States, the excess ingestion of fluoride toothpaste among some young children is almost certain to produce urinary fluoride levels that exceed 2 ppm in a portion of the child population.
  • In-Utero Exposure: Bashash 2017 and Valdez Jiménez 2017 evaluated the association of in utero exposure to fluoride on the offspring. The determination of the fluoride exposure was through urine analysis during the pregnancy.

Methodological Limitations

As both the NRC and Harvard reviews have correctly pointed out, many of the fluoride/IQ studies have used relatively simple designs and have failed to adequately control for all of the factors that can impact a child’s intelligence (e.g., parental education, socioeconomic status, lead and arsenic exposure). For several reasons, however, it is unlikely that these limitations can explain the association between fluoride and IQ.

First, some of the fluoride/IQ studies have controlled for the key relevant factors, and significant associations between fluoride and reduced IQ were still observed. This fact was confirmed in the Harvard review, which reported that the association between fluoride and IQ remains significant when considering only those studies that controlled for certain key factors (e.g., arsenic, iodine, etc). Indeed, the two studies that controlled for the largest number of factors (Rocha Amador 2007; Xiang 2003a,b) reported some of the largest associations between fluoride and IQ to date.

Second, the association between fluoride and reduced IQ in children is predicted by, and entirely consistent with, a large body of other evidence. Other human studies, for example, have found associations between fluoride, cognition, and neurobehavior in ways consistent with fluoride being a neurotoxin.  In addition, animal studies have repeatedly found that fluoride impairs the learning and memory capacity of rats under carefully controlled laboratory conditions. An even larger body of animal research has found that fluoride can directly damage the brain, a finding that has been confirmed in studies of aborted human fetuses from high-fluoride areas.

Finally, it is worth considering that before any of the studies finding reduced IQ in humans were known in the western world, a team of U.S. scientists at a Harvard-affiliated research center predicted (based on behavioral effects they observed in fluoride-treated animals) that fluoride might be capable of reducing IQ in humans. (Mullenix 1995)

Summary

When considering their consistency with numerous animal studies, it is very unlikely that the 53 human studies finding associations between fluoride and reduced IQ can all be a random fluke. The question today, therefore, is less whether fluoride reduces IQ, but at what dose, at what time, and how this dose and time varies based on an individual’s nutritional status, health status, and exposure to other contaminants (e.g., aluminum, arsenic, lead, etc). Of particular concern is fluoride’s effect on children born to women with suboptimal iodine intake during the time of pregnancy, and/or fluoride’s effects on infants and toddlers with suboptimal iodine intake themselves. According to the U.S. Centers for Disease Control, approximately 12% of the U.S. population has deficient exposure to iodine. 

sns Link parsing error
  • 페이스북으로 보내기
  • 트위터로 보내기
  • 구글플러스로 보내기
  • 블로그 보내기
  • 텔레그램 보내기

댓글목록

등록된 댓글이 없습니다.

이전글 다음글